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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 

APPROXIMATE CONVERSIONS FROM SI UNITS 
Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2
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EXECUTIVE SUMMARY 

External sulfate attack is known to be one of the most widespread and common forms of 
chemical degradation of concrete infrastructure and requires extensive rehabilitation within a 
few years of construction costing millions of dollars every year. Such degradation process is 
triggered by the diffusion of external sulfate ions through the pore network of concrete located 
in the geologic environment rich with sulfate ions. The diffused sulfate ions then react with the 
hydrated and unhydrated cement matrix components and form expansive ettringite. Many 
experimental investigations have been performed and predictive models have been developed 
to study the effect of sulfate attack and the resulting expansion. However, none of these studies 
involve the effect of osmotic pressure on the damage propensity of concrete exposed to sulfate 
bearing solution. Osmotic pressure is the pressure induced by the differential solute 
concentration that draws solvent from the low solute concentration to the high solute 
concentration solution. It is believed to cause spalling and cracking in concrete coated with 
semipermeable membranes that prohibit ingress of ions from external surroundings to the 
structure. To test this hypothesis that osmotic pressure plays a role in concrete deformation due 
to exposure to sulfate solution, a coupled poromechanical model has been developed. This 
model determines stresses and strains in saturated cylindrical specimens immersed in sulfate 
solution. For simplicity, the diffusion of solutes into the pore network is not considered and 
hence the formation of expansive agents is neglected.  

It is found that the osmotic pressure can develop high instantaneous tensile stresses at the 
surface when cylinder is exposed to sulfate solution due to the spatial gradient in the sulfate 
concentration across the radial position. Sensitivity of osmotic pressure induced stresses and 
strains to different constituent properties have also been investigated to identify material 
properties that can mitigate such early damage. Mandel-Cryer effect is also found to play a 
critical role in stress relaxation and the osmotic pressure induced damage propensity can be 
exacerbated by certain material properties such as low permeability and high porosity. It is 
believed that such a mechanistic model incorporating the effect of osmotic suction in concrete 
deformation will allow engineers to understand the underlying mechanism dictating the 
damage evolution process by short-term sulfate exposure, where the sulfate ions have not 
diffused through the pore network to react with the hydrated products and precipitate as 
expansive agents.  
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IMPLEMENTATION STATEMENT 
In order to disseminate the developed model and research results to the public, students, 
researchers, and practitioners, a user-friendly software interface is being created for the 
developed model. With this interface, the user will be able to obtain stress, strain, and pressure 
outputs for the assigned input parameters. 

Workforce Development: The member (post-doctoral researcher) working on this research 
project developed a new modeling skill specializing in multi-physics, multi-phase material 
modeling. She also learned poro-mechanics, a relatively new field to the concrete society.  

Supporting Outreach Activities: A conference paper was published and a presentation was 
given at the Tran-SET 2018 conference in New Orleans, Louisiana.  

Education: A user interface is currently being built for the developed model that will serve as 
an educational module for students, researchers, and engineers. Users will be allowed to input 
parameters including material properties and sulfate solution concentration to observe how the 
short-term sulfate solution exposure may develop critical stresses and strains in the concrete 
structure and may lead to damage.  
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1. INTRODUCTION 
According to the nation’s existing highway and transit condition and performance report 
published by the Federal Highway Administration (FHWA), over $35 billion was spent in 2012 
in replacing and rehabilitating the existing pavements and bridges (1). Even though the 
concrete structures were built conforming to the building codes and recommendations, much 
of the rehabilitation is due to the material deterioration exposed to aggressive environments. 
Sulfate attack is known to be the most widespread form of chemical degradation of concrete 
that appears in regions where concrete is exposed to soil or water containing sulfates. External 
sulfate attack, due to its complicated nature, has led to numerous researches, both experimental 
and theoretical, Experimental determination of concrete susceptibility to sulfate attack 
involves long-term immersion of concrete specimens in sulfate solution. While these tests that 
require months to perform, manifest damage in the form of large expansion, field investigations 
indicate evidence of high stresses at surface leading to cracks or softening and disintegration 
of the cement matrix. Moreover, the alternative recommended accelerated tests do not mimic 
the field conditions. Based on the previously performed experimental studies, the current 
design code prescribes a maximum allowable limit for the tricalcium aluminate phase in 
cement to mitigate the problem. This limit prohibits practitioners from using local raw 
materials and researchers from engineering binders with broad chemical and physical 
properties. Little data are available for modern materials for which increasing substitution of 
cement is utilized to reduce energy consumption and environmental emission. In addition, the 
mechanism and distress type caused by different sulfate solutions containing Na, Mg, Ca, K, 
and Fe are not fully known.  For example, cement with low tricalcium aluminate, as prescribed 
by the design code to withstand damage caused by the sodium sulfate solution, may prove 
detrimental when exposed to magnesium sulfate or sulfuric acid (2). 

Due to the complex nature of sulfate attack and varied effects caused by different sulfate 
bearing solutions, extensive studies have been performed and a vast literature is present on the 
topic (2-14). Several models were developed in the past focusing on the volumetric expansion 
of concrete (6), crystallization pressure generated by the crystal growth in the pore network 
(8), and poroelastic damage based on the reactive diffusion model (14). However, none of these 
models account for the osmotic suction caused by gradient in the salt concentration in the pore 
solution.  

The osmotic suction can be defined as the difference in pressures exerted by solutes on either 
side of a semi permeable membrane due to spatial gradient in the solute concentration (15). As 
a result, solvent is drawn out of low solute concentration solution to high solute concentration 
solution. While, osmotic suction is recognized to initiate damage in organic coatings on 
concrete substrates in the form of delamination, folding, and blisters (16), its effect on 
deformation of concrete structures subject to sulfate (more generally to any salt) solution is not 
known.  
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2. OBJECTIVES 
The primary objective of this work is to develop a coupled poromechanical model and to 
theoretically test the hypothesis that osmotic suction plays a role in the development of early 
damage during sulfate attack. In addition, the effect of material constituent properties and 
exposure solution on the osmotic pressure induced stresses and strains in saturated concrete is 
also studied. Furthermore, this work demonstrates the importance of incorporating osmotic 
pressure in developing prospective coupled chemo-poro-elastic diffusion-binding-mechanical 
models that can accurately predict concrete deformation and damage potential due to short-
term sulfate attack.   
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3. SCOPE 
In order to determine the effect of osmotic suction on concrete deformation, the proposed work 
utilizes poroelasticity (17) to develop a coupled linear elastic model that accounts for the 
difference in pore pressure driven by the spatial gradient in solute concentration. A cylindrical 
concrete specimen saturated with pure water is assumed to be subjected to sulfate solution of 
a given concentration. It is assumed that the diffusion of solute in the pore solution is much 
slower than the diffusion of water molecules so that there is no expansive agent formed in the 
pore network.  

  



4 

 

4. METHODOLOGY 
For modeling purposes, it is assumed that a cylindrical concrete specimen, completely 
saturated with pure water, is immersed in a sulfate solution bath with known solute 
concentration. The pore pressure at the boundary is calculated from the water activity of the 
solution bath. The concrete specimen is assumed to be coated with a semipermeable membrane 
such that no solute is diffused into the specimen allowing the transport of solvent only.  

4.1. Governing Equations 
The governing equations associated with the mass balance and linear momentum balance for 
an elastic porous material are used. In absence of inertia and body forces, the conservation of 
linear momentum provides (18): 

div 0T =  [1] 

where T is the externally applied total Cauchy stress tensor that is expressed (for a linearly 
isotropic material) as: 

 ( )2 tr 3
1 2 fT G I K Iνε ε ε

ν
 

= + − − 
   [2] 

where: 
ε  = infinitesimal strain tensor,  
G  = shear modulus of the porous body,  
K  = bulk modulus of the porous body,  
𝜀𝜀𝑓𝑓 = free strain,  
ν  = Poisson’s ratio of the porous body, and   
I = identity tensor.  

For a poroelastic material with invariant porosity upon pressurization, the free strain, fε , can 
be denoted as (17,19): 

3

L

f
b p

K
ε =   [3] 

where: 
Lp  = liquid pressure and 

𝑏𝑏 = Biot’s coefficient, and can be defined as: 

1 ,
s

Kb
K

= −  [4] 

where sK  is bulk modulus of the solid phase comprising the skeleton of the porous body.  



5 

 

The liquid pressure, Lp , can be determined using the liquid continuity equation along with 
Darcy’s law: 

 
( )

div( grad )
L

L L
L

k p
t

φ ρ
ρ

η

∂
=

∂
  [5] 

where: 
Lρ  = undeformed density of the liquid phase,  

k  = intrinsic permeability with dimensions of length squared,  
Lη  = viscosity of the pore liquid, and  

Lφ ρ  = the total mass of water per unit initial volume of the porous material with the current 
Lagrangian porosity, φ .  

For cylinders with high aspect ratio, the problem simplifies to one dimensional problem on 
account of symmetry about the longitudinal axis. Moreover, when the specimen is saturated 
with poorly compressible liquid, such as water, Equation [5] simplifies to: 

 
1 1L

L
L

p kb r p
t M t r r rη

∂ ∈ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
  [6] 

where: 
∈ = volumetric strain and 
𝑀𝑀 = modulus relating the pore pressure to initial Lagrangian porosity and porosity variation 
at zero strain. 

The constitutive equation, below, is used in Equation [6]: 
Lpb

N
ϕ = ∈+  [7] 

where 𝑁𝑁 is the modulus relating pore pressure to porosity variation at zero strain. N  linearly 
relates the pore pressure, Lp , to the porosity variation, 0ϕ φ φ= − , when the volumetric 
deformation, ∈ is zero. The modulus, M , is defined as: 
 

01 1
LM K N

φ
= +   [8] 

where: 
LK  = the bulk modulus of the pore liquid and  

0φ  = the initial Lagrangian porosity. 
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For long concrete cylinders (with length/diameter > 2), on account of the symmetry all three 
shear strains and stresses are zero. The non-zero stresses along the radial and tangential 
directions, rT  and Tθ  satisfy the equilibrium Equation [1] as: 

0rr T TdT
dr r

θ−
+ =   [9] 

In addition, the radial and tangential strains can be expressed as: 

r
du
dr

ε =  and u
rθε =   [10] 

 
where u is the radial displacement.  
 
Substitution of Equations [2], [3], and [10] in [9], gives the conservation of linear momentum 
for cylindrical coordinate system: 

( ) ( )1 1
3

Ld r ud b dp
dr r dr K dr

ν
 

= + 
 

 [11] 

Since, both the governing Equations [6] and [11], have two variables, u  and Lp , these two 
equations need to be solved simultaneously to capture the coupled poromechanical interaction 
of the porous body and the pore solution.  

4.2. Boundary Conditions 
Initially the specimen is assumed to be saturated with pure water. The initial condition 
associated with this assumption is:  

( ), 0 0L
r tp = =   [12] 

There exists no flow condition at the center due to axial symmetry, therefore, 

0,

0
L

r t

p
r

=

 ∂
= ∂ 

 [13] 

The boundary pressure at the surface is determined using the following expression:  

 

( ),2
lnL L L

D Lr t

Rp a
M

θρ
=

= −   [14] 

where: 
D  = the diameter of the cylinder,  
R = the universal gas constant,  
θ  = the temperature,  

LM  = the molar mass of the solvent water, and 
La  = activity coefficient of the solvent water. The water activity is defined as the reduction in 

vapor pressure due to the presence of solutes only. 
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The mechanical initial and boundary conditions are as follows: 

( ), 0 0r tu = =  [15] 

0,

0
r t

u
r =

∂  = ∂ 
, due to axial symmetry, and [16] 

,2
0Dr t

T
=

= . [17] 

as the specimen is subject to zero stress at the boundary. 

Figure 1 shows the model geometry along with the osmotic pressure applied at the boundary. 
Coupled Equations [6] and [11] are solved simultaneously to determine the unknowns, u  and 

Lp  for the boundary conditions specified by [12] to [17] and using the NDSolve function in 
Mathematica. 

 
Figure 1. Geometry of the water saturated specimen immersed in sulfate solution. 
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5. RESULTS 
The simulated pore pressure, bulk strain, tangential stresses for a 6 in diameter cylinder are 
plotted in Figure 2. The following materials properties are assumed: 19 21 10 m ,k −= ×

3 325.4 10 MPa,and 11.1 10 MP asK K= × = ×  with a porosity of 0.2. The concrete specimen is 
assumed to be immersed in 3 mol/kg Na2SO4 solution. The corresponding water activity 
coefficient is obtained to be 0.9 (20), which according to equation [14], gives the boundary 
pressure of 13.24MPa− . In this study, as the specimen is assumed to be saturated with pure 
water and contains no solute in the pore solution, a sudden exposure to the salt solution creates 
significant spatial gradient in the solute concentration. As a result, high osmotic suction is 
developed at the boundary which draws solvent molecules (water) from the specimen center 
to surface. Since, concrete is a weakly permeable material, water takes a long time to drain to 
the surface to equilibrate with the boundary pressure (Figure 2 (a)). As a result, boundary 
contracts more than the center that exhibits higher pressure than the surface (Figure 2 (b)). This 
differential strain across the radial position develops instantaneous high tensile tangential 
stresses at the boundary as shown in Figure 2 (c). This high stress has a potential to create 
micro-cracks at the concrete surface, which may exacerbate the problem when the expansive 
agents are precipitated in the pore network accompanied by the diffusion of sulfate ions and 
may lead to peeling or flaking of materials. Due to the coupled poromechanical action, right 
before the pressure at the center equilibrates with the pressure at the boundary; it rises above 
the initial value and takes longer to equilibrate. The strain compatibility, which requires the 
entire body to contract due to the suction applied at the surface, squeezes the center and 
increases the pressure above the initial value. This phenomenon, which is demonstrated to 
exacerbate the freezing deformation of concrete due to big aggregates with poor permeability 
(21), is popularly known as the Mandel-Cryer effect (22) in geomechanics and petroleum 
engineering. 
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(a)   

(b)   

(c)   

Figure 2. (a) Osmotic pore pressure, (b) bulk strain, and (c) tangential stress developed in a cylindrical concrete 
specimen exposed to 6% Na2SO4 solution. 
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For the modeling purposes and to demonstrate the effect of osmotic pressure, it is assumed that 
the specimen is initially saturated with pure water. This assumption is an extreme hypothetical 
scenario, which is necessary to create a significant spatial differential in the solute 
concentration and to develop high pressure gradient between the concrete specimen and the 
surrounding solution bath. In the field, because of the dissolved ions in the pore solution, the 
osmotic suction gradient will be much lower with very low stresses and strains than the values 
reported here. In the event that pore solution has higher concentration than the surrounding 
bath of the sulfate solution, pore pressure gradient will develop and water will migrate toward 
the surrounding solution. Because of this pore pressure gradient, differential strain will develop 
across the specimen which in turn will induce tensile stresses. Regardless of the direction of 
water migration, as long as the spatial gradient exists in the pore network, water will move 
from the high solute concentration region to low solute concentration region, and short-term 
high stresses will be exhibited.  

5.1. Sensitivity Analysis 
The following sections investigate the effect of salt solution, concrete permeability, porosity, 
and compressibility on the osmotic pressure induced stresses and strains. 

5.1.1. Effect of Sulfate Exposure 
When sulfates with different cations are dissolved in water, its activity is lowered significantly 
based on the type and concentration of the dissolved ions. For instance, saturated MgSO4 
solution can reduce the vapor pressure of water significantly and can provide water activity as 
low as 0.1 (23). In order to demonstrate how sulfates with different cations can affect osmotic 
pressure induced stresses and strains in concrete, two different water activities are considered. 
The simulated results are shown in Figure 3. It has been seen that very low water activity, 
either due to high concentration of sulfate ions or sulfates with different cations, can increase 
the osmotic suction at the surface significantly and develop significant contraction at the 
center. As a result, a very high tensile stress can be exhibited at the surface leading to spalling 
or cracking well before the solute reacts with the cement matrix and precipitates in the pore 
network. This high stress take a long time to relax and increases material susceptibility to 
damage for several hours.  
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Figure 3. Effect of exposure to sulfate solution on the simulated (a) pore pressure at the center, (b) bulk strain at the 
center, and (c) tangential stresses at the surface. 
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for an extended period. As a result, high-porosity concrete exhibits higher peak tensile stress 
for an elongated period and is more prone to osmotic suction induced early damage than a low-
porosity concrete. 

  

 
Figure 4. Effect of permeability on the simulated (a) pore pressure at the center, (b) bulk strain at the center, and (c) 
tangential stresses at the surface. 
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Figure 5. Effect of porosity on the simulated (a) pore pressure at the center, (b) bulk strain at the center, and (c) 
tangential stresses at the surface.  
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6. CONCLUSIONS 
From the simulated results, it is found that differential strain caused by high pressure gradient 
can exert instantaneous tensile tangential stress at the concrete boundary when it is exposed to 
sulfate solution. This pressure gradient can be attributed to osmotic suction caused by the 
spatial gradient in solute concentration, which draws liquid water (solvent only) from low 
solute concentration to high solute concentration. As a result, high differential in the volumetric 
strain can be observed which in turn can cause tensile tangential stress at the boundary. When 
this tensile stress exceeds the tensile strength of the material, it can create spalling or flaking 
at the surface. This stress may also serve as weak spots for future cracking or spalling when 
the long-term diffusion of sulfate ions into the pore network may eventually cause reaction and 
subsequent precipitation in the pore network leading to expansion.  

It has been also found that the intensity of the osmotic suction induced stresses and strains 
depend on the sulfate bearing cations and solute concentration. High solute concentration or 
sulfate bearing cations that lower water activity significantly can develop high stress at the 
surface for a prolonged period. Low permeability and high porosity may also exacerbate the 
osmotic pressure induced damage propensity in concrete by exposing the material surface to 
high stress. In this case, both parameters intensify the Mande-Cryer effect which delays stress 
relaxation for several hours. This Mandel-Cryer effect occurs due to the coupled poro-
mechanical interaction between the solid skeleton of the porous body and the pore solution.  
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7. RECOMMENDATIONS 
In light of the simulated results, it is expected that the osmotic suction plays an important role 
in the deformation of concrete exposed to sulfate solution, and needs to be incorporated in the 
diffusion-binding-mechanical model to accurately predict concrete deformation. The present 
work captures the short-term diffusion of the solvent only and does not include the diffusion 
of salts to pore solution and the subsequent reaction with the hydrated product and 
crystallization. It is believed that the incorporation of osmotic pressure in a coupled chemo-
poro-elastic diffusion-binding-mechanical model will help engineers understand the 
mechanism of concrete deformation (both expansion due to crystallization and spalling at the 
surface) exposed to sulfate solution. In addition, experimental research needs to be performed 
to validate the proposed hypothesis and the modeled results.  
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